
In the 1960s, Richard Hamming captured the
spirit and essence of modern computational
sciences in a profound statement: “The pur-
pose of computing is insight, not numbers.” In

this survey, “insight” means assessing the effects of
uncertainties on input parameters and the subsequent
effect on the simulation’s output. The basic tenet in
sensitivity analysis (SA) and uncertainty quantification
(UQ) is that variability in the input leads to variabil-
ity in the output, thus the primary purpose of
SA/UQ is to quantify these uncertainties. In doing
so, we can place greater confidence in the model’s va-
lidity and prioritize the importance of the assump-
tions made about the model’s parameters, as well as
make accurate predictions about system behavior.

We typically use forward sensitivity analysis (FSA)
when the number of system responses, or outputs
of interest, greatly exceeds the number of input
variables. Figure 1a shows how small changes in a
few input parameters can cause broad changes in
the output. In contrast, we use adjoint sensitivity

analysis (ASA) when this ratio is reversed—for a
given allowed variation in the output, ASA quanti-
tatively determines the allowed variation in the in-
puts (see Figure 1b). Both the forward and adjoint
methods are local to a particular solution, where
the derivatives defining the sensitivities are evalu-
ated at some fixed nominal values. Both methods
form the basis for SA.

Global methods, such as UQ, use sampling and
statistical techniques to assign distributions to in-
puts to determine the output’s resulting distribu-
tions. Suppose a model has two important input
parameters, p1 and p2, where each parameter has an
associated probability density function (PDF), as Fig-
ure 2 shows. Uncertainties in the input parameters
enter the model and produce uncertainty in the
output. In other words, the output isn’t a single
value but a PDF as well.

We can divide SA into two major categories: ana-
lytic methods aim to obtain explicit expressions for the
desired derivatives, and algorithmic methods calculate
the desired derivatives as a sequence of intermediate
derivatives. This sequence arises as the algorithm
evolves either forward or backward in time. 

Alternatively, UQ quantitatively determines var-
ious measures of uncertainty in outputs as a result of
input variability. Because UQ’s underpinnings are
derived from statistical methods, its main techniques
are based on sampling methods, and correlation and
variance measurements. The inherent problem of
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computational costs leads to the need for an efficient
means of obtaining small samples of input values.

Spread of an Infectious Disease
Let’s look more closely at SA/UQ in terms of a real-
world scenario: the spread of a disease in a large,
stratified population of people, most of whom are
susceptible to the emerging contagion. Assume that
the disease transmits itself when an infectious per-
son has contact with a susceptible individual.

A detailed epidemiological model would incor-
porate important aspects of disease transmission, in-
cluding incubation period, transmission probability,
an individual’s age, average mortality rate with and
without the disease, intervention strategies, and so
forth. Observational data helps us assign reasonable
numerical distributions to these parameters, so once
we specify the parameter distributions and the ini-
tial number of infectious individuals, the model’s
computer simulations can predict the complex sys-
tem’s behavior. An important response function for
this problem would be a measure of how rapidly the
disease spreads throughout the population.

Because very few of the parameters in this model
are known precisely, an important aspect of the in-
vestigation is to determine how changes, or per-
turbations, to a generic parameter p (such as the
disease’s incubation period) affect the infectious
class I(t) at time t. In essence, we’re trying to eval-
uate the derivative of I with respect to a particular
parameter p—that is, the quantity �I/�p. This SA
derivative quantifies how small perturbations in p
will propagate forward in time.

We can now determine which parameters have
the biggest effect on the disease’s transmissibility.
Because external intervention (such as vaccines, di-
agnosis, quarantine, and so on) can change only a
particular subset of the parameters, calculating the
sensitivity indices (SIs), (�I/�p)(p/I), gives us a nor-
malized measure of each option’s efficacy. SIs also
provide an equitable way to determine which para-
meters have the biggest effect on the disease’s
spread—Figure 3, for example, shows SIs for the in-
fection level with respect to the effective contact rate
Ir and the recovery rate I�. In this figure, SIs are time
dependent, and the effective contact rate has the
biggest effect on the epidemic’s spread 10 days into
the outbreak. Because each intervention option has
an associated cost, we can determine which combi-
nations should be implemented to minimize the dis-
ease’s spread for a fixed amount of money.

Industrial Air Pollution
Now let’s consider a different scenario: a new in-
dustry is coming to a populated area, and we need

a mathematical model to help guide the decision on
the factory’s location. The available sites are in

Influenced region on model prediction

Origin of local
parameter disturbance

Particular variation
of model prediction

Possible origin
of disturbance

(a)
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Figure 1. Forward and adjoint sensitivity. (a) Forward sensitivity
analysis quantitatively determines how local perturbations to input
parameters evolve forward in time. (b) Adjoint sensitivity analysis
quantitatively determines how much perturbation is permitted to
input parameters for a specified variation in the output. Although it
looks like the perturbations are made to the initial conditions, the
variations are in fact made to the defining parameters.
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Figure 2. Uncertainty quantification. The probability density
functions (PDFs) of two input parameters result in a multipeaked
PDF for the output variable.
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close proximity to businesses and recreational and
residential areas, and this factory has a history of
emitting toxic fumes. It would be a hazard to the
community if toxic levels exceed US Environmen-
tal Protection Agency (EPA) standards.

The city planners want to know where to put the
industry so as not to exceed EPA standards as well as
determine how sensitive their assumptions are about
the weather. An appropriate mathematical model for
this application would be a nonlinear transport equa-
tion, with specified boundary conditions defined by
local weather patterns. Assuming we have the pollu-
tant source as an explicit forcing function and initial
weather conditions, then we can use any of several
existing numerical weather simulation codes to de-
fine and solve the associated dynamical atmospheric
model to predict pollutant levels (see Figure 4).
However, this solution doesn’t directly answer where
the factory should be located under a wide range of
potential weather patterns. What we need here is an
appropriate response function.

Because the planners want to meet EPA standards,
these standards become the appropriate response
functions—for example, one EPA standard might be
that the average amount of an aerosol pollutant at a
specified altitude shouldn’t exceed a specified
amount over a six-hour period. Or, if the aerosol
precipitates to the ground, deposits on outdoor play-
ground equipment, and accumulates, then an ap-

propriate response function might be the total ac-
cumulated toxic substance over a designated area
and time period. In these cases, the response func-
tion isn’t the solution itself, but a functional of the
solution. Specifically, the functional takes the form
of a double integral: one integration corresponds to
the spatial component and the other to the tempo-
ral component. Evaluation of this functional over
available sites provides a list of acceptable sites.

Suppose a particular site meets EPA standards.
Before the industry accepts the designated site, com-
pany analysts will want to determine how much vari-
ation in pollutant production, wind, and so on is
allowable, given that it’s below the EPA standard. In
other words, the solution to the transport problem,
as given by the amount of pollution, can change,
thus the associated response function also changes.

ASA can help answer questions about how much
change in the defining parameters is allowable for
a given acceptable increase in the response func-
tion. The way to answer this question is to con-
struct another associated, or adjoint, problem. This
associated problem can provide a way to calculate
derivatives in a reverse or adjoint mode.

Nuclear Waste Repository
A common application of UQ is when input para-
meters don’t have fixed or specific values but take
on a range of values. Consider a study of proposed
repository sites for nuclear waste. Clearly, the un-
derlying geological structure will have a major ef-
fect on the unwanted diffusion of radioactive
materials in the ground. At best, geologists can
broadly estimate the underlying geological struc-
ture’s diffusive properties—one region of the pro-
posed repository might have diffusive properties
that follow a normal distribution, for example, and
others might follow logistic, lognormal, or uniform
distributions. The precise location of interfaces be-
tween boundary layers of materials with differing
densities, porosity, and so forth also causes uncer-
tainty in the input variables.

Naturally, the inevitability of these inherent un-
certainties in the inputs will produce uncertainty in
the model’s output variables. Moreover, certain in-
puts, such as the geological strata, might be corre-
lated and have the tendency to aggregate locally. The
model must reflect these correlations between input
parameters because they affect the output’s UQ.

In this example, UQ’s primary goal is to deter-
mine whether certain parameters—and their vari-
ation—result in waste outputs that exceed the levels
imposed by regulatory agencies. UQ’s methodol-
ogy is based on standard statistical methods and nu-
merical estimates (given as distributions and

−0.5

0.0

0.5

1.0

1.5

0 10 20 30 40 50 60 70
Time 

 Sensitivity index Ir
 Sensitivity index I

�

Figure 3. Sensitivity indices’ effective transmission rate SIr vs.
recovery rate SI�. The number of people infected is most sensitive in
the early stages of the epidemic, whereas the infected population’s
sensitivity with respect to the recovery rate is small and almost
independent of time.
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confidence intervals) and can help determine a pro-
posed site’s suitability. The information UQ pro-
vides also helps identify which assumptions have
the biggest effect on unwanted nuclear waste dif-
fusion, which is useful in allocating funding for ex-
pensive geological surveys (which, in turn, help
reduce the model’s uncertainty).

Forward and Adjoint Sensitivity
A common but extremely inefficient way to deter-
mine how a model’s solution is affected by perturba-
tions to input parameters is to choose nominal values
for the parameters, run a simulation, and get the so-
lution. We continue in this manner until each indi-
vidual input parameter is perturbed and the
subsequent solution calculated. This brute-force
method produces numerical estimates of derivatives,
but it’s computationally intensive. A better approach
is to introduce an additional problem—specifically,
an adjoint problem. It eliminates the need to use
brute-force methods and yields the desired deriva-
tives by only having to solve—once each—the for-
ward and adjoint problems.

System of Linear Equations
To introduce the concept of an associated adjoint
problem, let’s consider the ubiquitous system of lin-
ear equations Au = b, where A is a nonsingular and
nonsymmetric n � n matrix. SA, as applied to this
problem, can help determine how the solution vec-
tor u changes as small perturbations are made to the
matrix entries aij, or bi. Assuming that the solution
is sufficiently far from any singularities, SA attempts
to find explicit expressions for the derivatives �u/�q,
where q denotes any of the parameters aij, or bi.

Differentiating the linear system gives the for-
ward sensitivity equation

. (1)

An extremely poor way of solving for the desired
derivative �u/�q would be to exploit the fact that A
is assumed to be nonsingular and then premultiply
the equation by the matrix inverse. As any experi-
enced modeler knows, explicitly finding the inverse
should, in most cases, be vehemently avoided.

A more elegant way of solving for �u/�q is to in-
troduce an associated adjoint problem

ATv = c, (2)

where v is the associated adjoint variable, and c is
unspecified. Leaving the adjoint constraint vector
c unspecified—for now—is the key to isolating the

desired derivatives. Taking the transpose of the ad-
joint Equation 2 and premultiplying the forward
sensitivity Equation 1 by vT yields

.

Now we can cleverly choose a set of adjoint con-
straint vectors to be

, (3)

where the 1 is located in the ith entry for i = 1, 2,
..., n. This particular choice effectively extracts the
ith component �ui/�q.

Notice that the adjoint solution has—in effect—
solved the linear system, component by compo-
nent. This observation reflects the intimate
relationship between the adjoint solution and the
inverse matrix. To show that this isn’t a mere coin-
cidence, we can form the adjoint solution matrix,
whose rows are the adjoint vectors:

in which case ATV = I := identity matrix. In other
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Figure 4. Pollutant levels indicated by level curves.
These levels are greatest near the factory and
downwind from the pollution source. Sensitivity
analysis can measure the change in pollution
levels in the residential areas as a function of
changes in weather-pattern assumptions.
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words, the adjoint solutions are directly related to
the inverse matrix—specifically, VT = A –1.

We can use a diagram to demonstrate:

We can apply this elegant and powerful technique
for constructing an appropriate adjoint to other
static problems, including spectral, linear and qua-
dratic programming, nonlinear optimization, and
nonlinear equation problems.

In our example, the crucial aspects of finding the
derivatives were twofold:

• to construct an appropriate adjoint problem ATv
= c, and

• to construct appropriate response functionals
.

A clever choice of the response function J provides
an appropriate and useful associated problem: the
adjoint problem. In this case, we could formulate the
response functional as a projection operator.

You’re probably wondering if these fortuitous
choices were a fluke—we hope to convince you
otherwise in the next section. 

Adjoint Operator and Problem
The types of problems that are amenable to the ad-
joint methodology are those that we can express as

F(u) = f,

where F is a linear/nonlinear operator F : X � Y,
and f is the forward forcing function. We assume the
domain and range X and Y are sufficiently nice topo-
logical spaces—for example, both X and Y could be
Hilbert or Sobolov spaces. Also associated with the
forward problem is the task of determining the sen-
sitivity of a desired response functional J(u).

The adjoint problem arises naturally with the in-
troduction of an adjoint variable v � X, through the
calculation of the Gâteaux derivative defined as

.

Think of this definition as a directional derivative of

operator F at point u, and in the direction of adjoint
variable v. The somewhat awkward notation F �(u)v is
intended to suggest that operator F takes the forward
variable u and maps it to operator F �, which now de-
pends on both u as well as the adjoint variable v.

The next piece of necessary machinery is to for-
mulate an extended representation of operator F,
which we accomplish by assuming that F is suffi-
ciently Gâteaux-differentiable. Application of the
intermediate value theorem for operators permits
us to rewrite the forward operator F in extended
form as

�(u)u = F(u),

where the residual operator � is defined in integral
form as

.

Given that an appropriate inner product exists,
let’s consider the adjoint operation

��(u)v, w� = SC1 + �v, �†(u)w�,

where SC1 denotes the first solvability condition, and
�† denotes the adjoint operator associated with the
forward operator. (A simple example here is in or-
der. Consider the process of integration by parts,
where the associated inner product is a definite in-
tegral. In essence, a derivative is shifted off the for-
ward variable onto the adjoint variable, and in the
process, we must formulate appropriate boundary
conditions (BCs) so that the adjoint problem is cor-
rectly defined. In the more abstract operator set-
ting, the SC1 is, in fact, the analogy of the BCs.
Appropriately choosing the adjoint variable’s
boundary values will ensure that the SC1 is anni-
hilated.) When SC1 = 0, we refer to the result as
the Lagrange identity.

The associated generalized adjoint problem is

�†(u)v = g,

where the adjoint forcing function g hasn’t yet been
specified. As in the linear system problem, not
specifying g at this time is advantageous because it
might be cleverly defined later in terms of the re-
sponse functional J to ensure that the solvability
conditions are satisfied.

A second solvability condition SC2 occurs when
the forward and adjoint problems are related. As-
suming that the Lagrange identity is satisfied—that
is, SC1 = 0—then taking the inner product of the
forward problem with the adjoint solution gives
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��(u)u, v� = �f, v�,

while taking the inner product of the adjoint prob-
lem with the forward solution gives

��†(u)v, u� = �g, u�

�v, �(u)u� = �g, u�

�v, f � = �g, u�.

This invariance condition, or second solvability
condition SC2, relates the forward and adjoint so-
lutions and forcing functions by the condition

�g, u� = � f, v�,

in which case, we define the adjoint forcing func-
tion g so that

�g, u� = J(u).

We can use a diagram to visualize the adjoint
problem’s construction:

For the linear system, the adjoint methodology
produces the adjoint problem ATv = c when the op-
erator equation F(u) = f is constructed from Equa-
tion 1. Specifically, the results follow when

, , and 

.

Forward and Reverse Modes
In contrast to the static model in the previous sec-
tion, other commonly occurring models evolve
temporally as well as spatially. Moreover, the tem-
poral and spatial components can be continuous
or discrete.

Initial Value Problem
We use nonlinear systems of ordinary differential
equations (ODEs) to describe a dynamical sys-
tem’s evolution. In theory, a solution that’s dif-
ferentiable in time exists, but we usually can’t
find the explicit solution. In this case, we apply
numerical algorithms to produce a sequence {un}
that approximates the actual solution u(tn) at
time tn.

Consider the scalar, autonomous, nonlinear
ODE

, (4)

with given initial condition u0 and parameter p, and
where t � [0, b]. Associated with this dynamical sys-
tem is a response functional J = J(u), which de-
pends on the forward solution u. SA requires
calculation of the SI

,

where q denotes either u0 or p.
To calculate this SI, we must evaluate the time-

varying derivatives �u/�u0 and �u/�p, which we ac-
complish by solving the forward sensitivity
equations

, ,

simultaneously with the forward problem in Equa-
tion 4. If q = u0, the initial conditions are �u/�u0|t=0
= 1 and �u/�p|t=0 = 0, whereas if q = p, the initial
conditions are reversed.

Because—in general—we can’t solve this dy-
namical system in closed form, we apply a robust
numerical algorithm to obtain a sufficiently accu-
rate approximation over some specified grid. These
algorithms frequently take the form of an iterative
scheme—for example, when we initially apply a
single-step algorithm, u1 	 u(t1) is constructed from
the given initial condition u0 as

u1 := 
1[u0; p].

Subsequent approximations are generated by re-
peated compositions of the operators 
k:
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un+1 := 
n+1 � 
n � ��� � 
1[u0; p].

The variables arising in the forward and adjoint
modes are categorized as input, intermediate, and
output variables. In this example, the input vari-
ables are the initial condition u0 and the parameter
value p. The intermediate variables are the approx-
imations un, and the final output variables are re-
sponse functionals of the solution—namely, J(uend).
Execution of a single-step algorithm, in the for-
ward mode, calculates the derivatives in order:

.

We calculate the specific differentiations by us-
ing compositions of the chain rule:

:

We call these calculations the forward mode because
the derivatives dun/dq are calculated successively—
that is, recursively forward in time. Each interme-
diate variable un is differentiated here with respect
to input variable q.

The adjoint mode, however, reverses these evalu-
ations in the sense that we calculate and evaluate
the output variable’s derivative with respect to the
intermediate variables in a reverse order. Let uend =
u; the adjoint derivatives are

,

where they’re evaluated in reverse mode:

:

:

.

In the more general case—in which the numeri-
cal algorithm isn’t simply a single-step method but
a sequence of function evaluations—the reverse
mode leads to a linear system. The coefficient ma-
trix of the associated matrix equation is the transpose
of the Jacobian matrix. The adjoint, disguised as the
matrix transpose, naturally appears in the reverse
mode’s execution.

Computational Issues
When deriving the adjoint equations for discrete ap-
proximations of differential equations, the question
arises whether it’s better to first discretize the equa-
tions and then form the adjoint equations, or to form
the adjoint equations of the differential equations and
then discretize the equations independently. The first
approach is aided by automatic differentiation soft-
ware tools1 and gives an accurate SA of the finite dif-
ference approximation, even when it’s not an accurate
approximation of the original differential equation.
The second approach requires both the forward and
adjoint equations to be accurately approximated for
the results to be valid. Naturally, there are strong ar-
guments in favor of both approaches.

When estimating the sensitivities of finite dif-
ference methods, we must be especially careful to
avoid potentially large truncation or round-off er-
rors. Even though the numerical solution of the
differential equations are computed accurately, it
doesn’t necessarily mean that the numerical ap-
proximations of the sensitivities are accurate.

Uncertainty Quantification
The defining parameters of models in environmen-
tal, financial, industrial, and risk analysis settings are
often known only within a specified interval—
namely, pi � [�i, �i]. The basic assumption is that each
input parameter is viewed as a random variable, with
an associated PDF and a cumulative distribution func-
tion (CDF). In this situation, calculating sensitivity
indices by explicitly finding derivatives is inappro-
priate. (In discrete event systems, we can obtain gra-
dient estimates in essentially two broad ways:
infinitesimal perturbation analysis or likelihood ra-
tio/score function methods. Strictly speaking, these
methods do indeed estimate derivatives.) Instead, the
measure of choice is based on estimating the variance
of the Monte Carlo method’s output. The goals here
are usually priority setting: determine which of the
many parameters must be precisely measured and
which parameters produce the most output variance.
If we use UQ in a forecasting mode, then the para-
meters’ PDFs take on an assumed character, and thus
determine the output or response’s character. If we
use UQ in a calibration mode, then we can use the
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output’s character to change the assumptions of the
input parameters’ PDFs. UQ execution generally fol-
lows this procedure:

• Assign an appropriate PDF to each input
parameter.

• Select a representative set of samples from each
PDF.

• Evaluate the model and obtain the associated set
of outputs.

• Define and evaluate suitable measures for the SA
and UQ.

In any UQ discussed here, the mathematical
model F is assumed to be deterministic, but the in-
puts are treated as stochastic quantities. (This is in
sharp contrast to the model structure’s sensitivity.
In this arena, we frequently use principal compo-
nent analysis to identify the model’s strongly corre-
lated and uncorrelated components. Using this
information, we can break the model into submod-
ules, each of which we can analyze individually.)

Sampling Methods
Consider the single output model, defined as

u := F(p),

where p := ( p1, …, pN), and each input parameter is as-
sumed to be  pi � [�i, �i] intervals. We generate a sam-
ple of M parameter vectors from the designated PDF
and evaluate the output function. The way in which
a sample is constructed is extremely important in de-
termining the output’s perceived uncertainty as well
as the inputs’ relative importance. Let’s review some
of the more commonly used sampling methods.

Random Sampling
The simplest approach is to select random samples
of numbers x in the interval [0, 1]. For the chosen
number x, we determine the associated sample
value pi, in the interval [�i, �i], by finding the in-
verse of the CDF—that is, p = CDF–1(x). This sam-
pling strategy is easy to implement, and for large
samples, it produces unbiased estimates of the
mean and variance of output U. However, if we di-
vide the sample interval [�i, �i] into a large number
of equally sized subintervals, and a relatively small
number of samples is taken, we have no guarantee
that all the subintervals will be sampled.

Stratified Sampling
A more sophisticated sampling strategy is strati-
fied sampling. This variance reduction method
first divides the input parameter interval into (pos-

sibly nonuniform) strata or subintervals. Next, a
random sample is chosen from each of the subin-
tervals. The motivation behind stratified sampling
is to ensure that we obtain samples from each par-
ticular subinterval.

Another commonly used stratified sampling
method is Latin hypercube sampling. To visualize
this process, imagine a square with M equally di-
vided rows and columns. A Latin square has the geo-
metric property that in each row and column, one
and only one cell is occupied. This sampling
method’s strategy is to replace the concept of a par-
ticular cell being occupied with getting a sample
from that particular associated subinterval. Orthog-
onal sampling adds the additional requirement that
the distribution of samples be evenly distributed
from the sample subspaces.

Latin hypercube sampling is slightly easier to im-
plement than orthogonal sampling. Both methods
return a sample that gives a good representation of
variability, as well as reduce the variance in the out-
put’s evaluation. The main advantage to using either
method is that we can obtain smaller sample sizes
without a major subsequent loss of quantification of
the output’s variance. In comparison, random sam-
pling generates new samples without taking into ac-
count previous ones, which means it doesn’t require
advanced knowledge of how many sample points are
needed (the reverse is true of Latin hypercube sam-
pling and orthogonal sampling).

If the underlying input parameters are corre-
lated, choosing samples can be more difficult. An-
other caveat is that it’s possible to artificially
introduce correlations between parameters when
none actually exist.

Measuring Sensitivity and Uncertainty
The next step is to statistically analyze each of the
M realizations ui to determine the expected value
and variance. We can choose other, more informa-
tive measures depending on whether the relation-
ship between the input and output uncertainties
appears to be linear or nonlinear.

Linear Regression Analysis
If the relationship between input and output un-
certainties is essentially linear, the standard ef-
fective methods include regression, correlation,
and partial correlation analysis. Standardized re-
gression coefficients provide quantitative mea-
sures of the specific, individual importance of
how closely linked the output is with the input.
Essentially, these coefficients measure the effect
of individually changing each input parameter’s
value by a fixed portion of its standard deviation.
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Partial correlation coefficients quantify the
strength of the linear correlations between the in-
put and output while removing correlations be-
tween other inputs.

Rank Transformation
When the relationship between input and output
data appears to be nonlinear but monotonic, we typ-
ically use the rank transformation methodology. As
the name suggests, input data is ranked in increas-
ing order, and the associated output is rearranged ac-
cordingly. We then perform the usual regression
analysis on the ranked data set to produce the Spear-
man rank coefficient. This method produces a mea-
sure of how strong a correlation there is in the
monotonicity between the input and output data.

These measures assume that the input variables
are independent—that is, that they aren’t corre-
lated. When this isn’t true, these methods can give
erroneous results, and more sophisticated methods
might have to be applied.

All the methods discussed here rely on some
form of regression. A more in-depth analysis of
these methods reveals that we can derive them
from the concept of variance VarP[�[U|P]], where
P and U are the input and output spaces, respec-
tively, and � is the expected value. More sophisti-
cated methods include Sobol’ and the Fourier
amplitude sensitivity test.

Sobol’ Method
To intuitively understand the Sobol’ method, recall
the essence of a Fourier series—a series of mutu-
ally orthogonal and harmonic functions can repre-
sent an arbitrary function. The Sobol’ method is
similar in that it decomposes the output model
function into a unique sum of orthogonal functions
of increasing dimension.

Consider the three-input, single-output model

u = F(p1, p2, p3).

The associated Sobol’ decomposition is of the form

F( p1, p2, p3) = F0 + F1( p1) + F2( p2) + F3( p3) +
F12( p1, p2) + F13( p1, p3) + F23( p2, p3) + 
F123( p1, p2, p3),

where the individual decomposition functions are
mutually orthogonal with respect to integration over
the input sample space and are defined inductively.

Once this has been accomplished, the variance is
similarly decomposed as

D = D1 + D2 + D3 + D12 + D13 + D23 + D123,

from which the first-order sensitivity coefficients
are defined as

, , and .

Higher-order sensitivities such as S12, S13, S23, and
S123 are similarly defined. The Sobol’ sensitivity co-
efficients (sometimes called total SIs) quantify the
fraction of the variance contributed to the total
variance by individual or combinations of inputs.
In other words, D2 provides a quantitative measure
of the fraction of the total variance that p2 con-
tributes, whereas D13 describes the combined con-
tribution from p1 and p3.

This method’s advantage is that higher-order
sensitivities give additional measures of how mul-
tiple parameters can affect the output’s overall vari-
ance. However, its disadvantage is the amount of
computation needed to calculate all these coeffi-
cients—namely, M � 2N evaluations. If the number
of parameters N is large, clearly the computational
cost becomes prohibitive.

Fourier Amplitude Sensitivity Test
The Fourier amplitude sensitivity test’s main goal
is to evaluate the expected value of the output’s kth
moment—namely, the multidimensional integral

.

This integral’s evaluation provides the basis for vari-
ous sensitivity measures. The methodology for eval-
uating this integral is to construct an appropriate
sequence of parameterized frequency transformations

pi = Gi (�i, s), s � (–�, �), for i = 1, …, N,

where the Gi and �i are as of yet unspecified func-
tions and frequencies, respectively. When properly
chosen, the expected value �[U] is now approxi-
mated by

.

Additionally, we can approximate the variance �[U]
with a series of Fourier coefficients—specifically,

,
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.

The main challenges are to

• define appropriate transformations Gi and fre-
quencies �i, and

• sample the parameter space on a sufficiently fine
mesh to accurately evaluate Fourier coefficients.

We frequently use the arcsine function as the trans-
formation, where the frequencies are required to be
incommensurate. (A set of frequencies is incommen-
surate, provided any arbitrary frequency in that set
can’t be written as a linear combination—with inte-
ger coefficients—of any other frequency.) These par-
ticular choices create a sequence of space-like–filling
curves that consist of oscillating straight lines. Because
the frequencies are incommensurate, these lines are
guaranteed to come arbitrarily close to any element
in the input space. In other words, these transforma-
tions attempt to foliate the input parameter space.

One advantage of using the Fourier amplitude sen-
sitivity test is that it works well for both monotonic
and non-monotonic outputs. Furthermore, it has no
restrictions such as fixing the values of all the para-
meters except one to determine sensitivity. This ben-
eficial aspect allows for wide ranges of parameter
sampling and the possibility of identifying extreme
events. Finally, the extended Fourier amplitude sen-
sitivity test method briefly described here is also sig-
nificantly faster than Monte Carlo methods.
However, if we have a large number of inputs, we can
encounter significant computational complexity.

Discrete Event Simulations
Many modern problems of interest contain two
fundamentally distinct aspects from previous mod-
els: the system’s state space is a discrete set, and the
state transitions are event driven. We call these
types of models discrete event simulations.

Let’s consider the standard queueing problem:
clients or customers must wait in line to use a lim-
ited resource. Customers arrive and wait in a
queue, and once a server has completed their re-
quest, they depart. We can thus define the event
space as arriving/waiting, processing, and depart-
ing. Associated with the event space are the state
variables—the number of customers waiting to be
serviced in a given queue, the waiting time, and the
server state are all quantities of interest here. A typ-
ical sensitivity concern is how the servers’ process-
ing time affects the mean wait time or number of
clients in a queue. In this case, we assume the pa-
rameter varies continuously—that is, the process-

ing time can improve or degrade continuously over
time. A different situation occurs when the para-
meter can only take on discrete variables—if we in-
crease or decrease the queueing capacity, for
example, then by definition those changes will oc-
cur only by integer increments.

UQ, using the previously discussed sampling
methods, requires multiple runs to generate the as-
sociated output. Taking a different approach, two
methods that don’t require multiple runs are the
score function method and infinitesimal perturbation
analysis. The elegance of both methods is that we can
determine sensitivity with a single sample path—that
is, a single simulation. This elegance, however, comes
with a price: we must have some knowledge of the
PDF and CDF for the decision variables.

Score Function Method
To illustrate the idea of the score function method,
let u � U denote a random variable with CDF 
y = F(u; p), where p denotes some parameter. Sup-
pose the measure of interest is the expectation value
of L[u]—that is,

J(U ) := �[L[U]] = U.

We find the sensitivity by assuming that the differ-
entiation and integration operators commute, in
which case

,

where the likelihood ratio is defined as �(u; p) :=
(�/�p)[ln[dF(u; p)]]. In other words, we can calcu-
late the moments’ sensitivity as the expectation of
another function—namely, L[u]�(u; p). Because
only a discrete sample is available, the estimate re-
duces to

.

The score function method’s advantage is that
the estimate is relatively easy to calculate. However,
its downside is that this sum of positive terms in-
creases proportionately to the simulation’s length,
in which case the associated variance is an increas-
ing function. This has the effect of yielding poor
variance estimates.

Infinitesimal Perturbation Analysis
The motivation behind infinitesimal perturbation
analysis is to calculate the expectation value using
the inverse transform method. Because the CDF’s
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inverse is given by u = F –1( y; p), we can rewrite the
expected value of L in the inverse form

.

Once again, let’s assume that the differentiation and
integration operators commute, so we can now
write the derivative sensitivity as

.

Notice how the two derivative expressions reflect
the fact that perturbations to parameter p change
the sample function and the sample.

The main areas for applying this method are in
queueing theory—specifically, when timed events
aren’t significantly affected by perturbations to
the underlying parameters. The biggest dis-
advantage of infinitesimal perturbation analysis is
its limited applicability.

For those readers who want to perform SA
or UQ on a particular application, we en-
courage you not to write your own com-
puter code but to take advantage of

existing packages. When doing an Internet search,
use the keyword automatic differentiation (AD). A
helpful site is www.autodiff.org; it offers links to
packages such as ADIC (C/C++), ADIFOR (For-
tran 77), or AdiMAT (Matlab). The Joint Research
Center for the European Commission’s site on SA
and UQ (http://sensitivity-analysis.jrc.cec.eu.int/)
offers tutorials, conference proceedings, forums,
and other helpful information.

We hope the discussions and examples in this
survey will also whet your appetite for further in-
vestigation of the applications, implementation,
and theoretical foundations of SA and UQ. To help
motivate you, we’ve provided a nonexhaustive list
of references to specific topics of interest. These
references discuss, in much greater detail, the ideas
presented in this article.

The authors of a good, basic introduction to
UQ numerically examine several test cases via a
downloadable program called Simlab, which is
available at www.jrc.cec.eu.int/uasa/primer-SA.
asp.11 The same site also has downloadable scripts
in Matlab and Gluewin. The authors of a more in-
depth and broader coverage of UQ offer a list of
comprehensive references; their bibliography is 21
pages long!10

Two recent monographs cover adjoint formal-
ism in great depth and sophistication,7,8 and both
are very thorough. Two other studies extensively

cover the FSA and ASA methods in two separate
volumes.2,3 Another study focuses on the compu-
tational issues that arise when implementing algo-
rithmic methods and offers a healthy dose of
warnings and discussion about computational ef-
ficiency.1 Lastly, separate researchers extensively
discuss infinitesimal perturbation analysis and the
score function method and thoroughly cover ap-
plications and theory.4–6,9
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